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The goal of these notes is to be exposition and as a reference. I may include details or exclude them as I see fit,
based largely on their relevance to the exposition or likelyhood that I will need to refer to them many times.
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Linear Logic

History and Philosophy
Why study logic? What is the study of logic? Logic is the "science" of reasoning. It seems there are many ways to
take this seriously. Maybe the most successful was "classical logic", there have been successful critiques against it but
it seems largely untouched.

Regardless it seems that the most immediate way to study logic is to write one down and then examine its prop-
erties. One makes observations about what they think is correct argumentation or the nature that we can "a priori"
combine truths or some such thing, and then codefies them as formal systems. By nature we want to abstract forms
from arguments or truths to see what they have in common and deduce logic. Now once someone has written such a
thing down it seems that if you take it seriously as capturing the essence of truth and its manipulations then studying
it and its properties is quite important. What can and cant be proved in the system, how can such and so be proved.
What form does a correct argument take, are there equivilent arguments for the same thing. etc. From this point of
view. One then becomes interested in proofs as the bearers of truths. One wants to know how complicated a proof of
something will be etc. You get the domains of logic and proof theory. This process somewhat lead to two main logics
"classical" and "intuitionistic". LL in a sense contains them both, moreover it allows more delicate control over the
structural rules of them. In this way LL can be seen as a tool for proving things about the logics that exist inside of it
and that people for some reason care about (they capture the one true logical method or something).

Another point of veiw may be that Linear Logic is itself the one true logic (or a better attempt at it), that it better
mirrors the essence of human reason, or the reason of god (i.e. the logic that is latent in the universe whatever that
means). So LL is itself the thing we ought to study, not merely a tool.

One can consider evolutionarily how logic may have came to be, why we beleive in implication and conjunction
and negation etc. The thing that LL initially was emphasissed for was its ability to represent the finite vs infinite. To
represent causal implication and logical implication. This may be good justification for beleiving LL is closer to the
strictly correct notion of reasoning because there are many rules of thought that are finitistic (causal), while there are
the "logical" (mathematical) laws that are infinite that are also captured by LL.

If logic is supposed to capture how we think, or how truth in an abstract sense "works" then we can ask the meta-
quesiton. How do we compare different logics. What makes such and such logic better or more true than another. This
is obviously a subtle and meaningless question. Regardless it seems important. One answer is utility. A logic is correct
iff I get the things I want to be true being true from it. There are empiricist criterions, a rule is logically valid in the
limit of some inductive argument. One suggested by Dan that perhaps one should take seriously the idea of symmetry
as a logical asset, the more symetry a system seems to have the better. What one means by symmmetry (delimiting)
and why an inconsistent system is not the ultimate in symetry is not clear but its a concept that can be applied just as
validly as empiricism or the more honest blind preference.

Well anyway one might claim that LL has more symetry than classical and for this reason is to be prefered because
it also has the same utility etc.

It occurs to me that maybe I could think of conjuction, implication and negation as trancendental logical rules in
the Kantian sense (necessary for the possibility of [LOGICAL] thought).
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Intuitionistic Turn
UNDER CONSTRUCTION

What is meant by intuitionistic or constructive logics. Brouwer and Heyting were the spearheads.
The synthesis of the movement seems to be the proofs as programs paradigm. If there is a Curry-Howard type

isomorphism, a deterministic cut elimination process or you restrict to single formulas on the right of the turnstile.
Why is this related to double negation contradiction etc. There is also the point that Choice is non-constructive

but that is somewhat seperate.
Why is the last thing constructive, precissely because it corresponds to the other two.

REFERENCE AND PROOF FOR THIS. THE UNDERSTANDING IS ALWAYS IN THE PROOF

Well the point is that Girard "discovered" LL in a semantics for intuitionistic logic and it was somewhat of a selling
point in the original work that his logic was "constructive with an involutive negation". I kind of want to understand
the idea of constructive more deeply here.

Quick Summary of Linear Logic
[?], [?], [?] as well as the original paper and the appendix of "Proofs and Types" by Lafont.

Linear logic appears to capture the logical behaviour of things like causality, question and answer, action and
reaction, once, infinitely many times, both and either. These interpretations all focus on the role of the "bang" and
"why not" modalities, which formally replace the structural rules.

Classical logic has the property that all proofs of a sequent must be equivilent under cut elimination (See Lafonts
introduction for an explination why); this means that there can be no non-trivial denotational semantics and no Curry-
Howard like correspondence to computation (all programs that compute the same thing are identified). Linear Logic
refines the structural rules of classical logic to remidie this, i.e. it gives a classical setting in which the Curry-Howard
type correspondence will hold. This is the sense in which it is constructive. It is nicer that intuitionistic logic because it
maintains the symmetries of classical logic (involutive negation) while claiming the correspondence to programs still.
The deduction rules, using a one sided sequent caqlculus presentation for its compacness, are below:

Identity group:
axiom

⊢ A, A⊥
⊢ Γ, A ⊢ A⊥,∆

cut
⊢ Γ,∆

Structural Rule:
⊢ Γ exchange (Γ′ is a permutation of Γ)
⊢ Γ′

Logical Rules:
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one
⊢ 1

⊢ Γ, A ⊢ B,∆
times

⊢ Γ, A ⊗ B,∆

true
⊢ Γ,⊤

⊢ Γ, A ⊢ Γ, B
with

⊢ Γ, A&B

⊢?Γ, A
of course

⊢?Γ, !A

⊢ Γ, A
deriliction

⊢ Γ, ?A

⊢ Γ, A
for all (x not free in Γ)

⊢ Γ,∀x.A

⊢ Γ
false

⊢ Γ,⊥

⊢ Γ, A, B
par

⊢ Γ, A

&

B

(no rule for zero)

⊢ Γ, A
left plus

⊢ Γ, A ⊕ B

⊢ Γ, B
right plus

⊢ Γ, A ⊕ B

⊢ Γ
weak

⊢ Γ, ?A

⊢ Γ, ?A, ?A
contraction

⊢ Γ, ?A

⊢ Γ, A[t/x]
exists

⊢ Γ,∃x.A

The language is given over some set of atomic propositions and their negations {p, p⊥, q, q⊥, ...}. There are four
constants 1,⊥,⊤, 0 for the connectives ⊗,

&

,&,⊕ respectively as well as the modalities !, ? and the quantifiers ∀,∃.
Apart from the atomi negations the negation operation is meta-notation (defined) for the following:

1⊥ ≡ ⊥

⊤⊥ ≡ 0

(p)⊥ ≡ p⊥

(A ⊗ B)bot ≡ A⊥

&

B⊥

(A&B)⊥ ≡ A⊥ ⊕ B⊥

(!A)⊥ ≡?A⊥

(∀x.A)⊥ ≡ ∃x.A⊥

⊥⊥ ≡ 1

0⊥ ≡ ⊤

(p⊥)⊥ ≡ p

(A

&

B)⊥ ≡ Abot ⊗ B⊥

(A ⊕ B)⊥ ≡ A⊥&B⊥

(?A)⊥ ≡!A⊥

(∃x.A)⊥ ≡ ∀x.A⊥
Likewise implication is meta-notation for the following

A⊸ B ≡ A⊥

&

B

Its interesting to notes that the deriliction rule is equivilent to adding either of the axioms B⊸?B or !B⊸ B.

Inclusions of Other Logics
There is an embedding intuitionistic LJ ↪→ LL

Theorem. A sequent in the propositional (no quantifiers) fragment of Gentzens LJ is provable iff its image is provable
in LL under the translation

A ∧ B 7→ A&B

A ∨ B 7→!A⊕!B

A =⇒ B 7→!A⊸ B

¬A 7→!A⊸ 0
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Proof.
Proof? Extend to full generality of quantifiers, I imagine its identity map.

Translation and similar theorom for classical (LK)

Cut Elimination
Want to connect this up to the nontrivial denotational models as well as how it replaces classical logic. Connect to the Curry-Howard correspondence for LL.

I will give an outline of the proof strategy given in [?].
Fix SN graphic

There are many technical definitions required to set up the apparatus about which we prove SN. The authors define
approximately 3 distinct but similar systems of nets. There are the sliced pure structures (sps) that are perhaps the most
general, and in which several theorems of normalisation are proven. There is the sℓps structures, effectively labelled
sps that are used to show confluence and WN of a subcolleciton of sps. Then there are the LL nets, these are a slight
variation of sps with a second additive box as well as labelled edges. These are obviously the main interest and their
strong normalisation follows from them being slicable, translatable into the language of sps.

For each of these systems new cut elimination rules are defined. sps has 10, while sℓps takes the non-erasing
subset of the sps cut rules and modifies them to edit the labels in appropriate ways (but mainly unchainged). LL nets
have three new cut elimination rules; (∀/∃), (ccad) and (&/⊕i) for dealing with the quantifiers and additive rules that
are now in sps. The difficulty of translating the normalisation of sps into LL nets is effectively in dealing with the
(ccad) rule.

The technical definitions required to formally set up these cut elimination relations are:

• Module: An sps which may have edges without sources at depth 0. These are hypotheses. The contractum of a
reduction step will be a module.

• One hole context: A sps with (exactly one) special cell the hole. The hole has some arity and coarity and is
supposed to be a missing link (or peice of the sps) so to say. You can plug modules into holes by matching the
hypotheses and conclusions with the holes arity and coarrity.

• Context closure: The context closure of a binary relation R between modules is the smallest relation containing
R such that for any one hole context ω[] if µRµ′ then ω[µ]Rω[µ′].

As well as the different types of cut links that rule out pathological (non-typable) nets,

• Clash: The premises of the cut are not dual edges

• Deadlock: The premises of the cut are the conclusions of the same axiom rule (loop)

• Reducible: Otherwise

The final technical definition needed is that of

• Swtiching of a flat: A subgraph obtained by forgetting directions and deleting one of the premises for every

&

and ?c nodes.

• Switching acyclic flat: A net such that every switching is acyclic.

which will be a necissary condition for the strong normalisation of some nets. Recall that a flat is the basic building
block of an sps, just a graph built of the differnt links, ensuring that the arity and coarity is matching (only condition,
no boxes for the bangs are included yet).
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1.5.1 Rewrite Theory Results

First some definitions. If
x
−→ is a binary relation on arrows then

•
x=
−−→ is the reflexive closure

•
x+
−−→ is the transitive closure

•
x∗
−→ is the reflexive transitive closure

And the different types of confluence: (1) Local Confluence, (2) Confluence and (3) Strong Confluence

π π2 π π2 π π2

π1 ∃π3 π1 ∃π3 π1 ∃π3

(1) (2) (3)

x

x

∃x∗

∃x∗

x∗

x∗

∃x∗

∃x∗

x

x ∃x

∃x

There are three key lemmas in the proof that are referenced.

Theorem (Newman). A locally confluent and strongly normalizing relation is confluent

Theorem (Hindley-Rosen). If two relations are confluent and commute then their union is confluent

Theorem (Di Cosmo-Piperno-Geser). Given two relations
x
−→,

y
−→ such that

x
−→ is SN and for every π1, π2, π there is a π3

and arrows making the following commute

π π2

π1 ∃π3

x

y

∃x+

∃y∗

then
x
−→ and

y
−→ commute

1.5.2 The Proofs

If one can read the figure ?? then each of the arrows is pretty clear with perhaps one or two subtleties. So the main
meat of the proof should be in the leaves of this diagram. These then are what we will outline here. My goal is to give
the idea of the proof, a supplement to going through the proof carefully in the paper.

The subtleties of the arrows are: Recalling that S Nℓ is basically the strong normalisation of labelled sps under
non-erasing reduction steps. The labels however really play no role in the reduction so this makes S N¬e an immediate
consequence. The other arrows are either immediate or clear short and clear proofs in the paper (typically inspecting
cases to apply the hypothesis).

Now asside from the lemmas proven in other papers (referenced above) there are four (six) subproofs that are very
delicate. The others are largely inspecting cases or simple inductions. Those are:

Theorem.
log
−−→ is SN

Proof. The idea of proving any SN is to find some strictly reducing measurment of complexity and then induct
on it. Here we will use the idea of a single threaded slice to create a reducing measure on the sps.

A single threaded slice (sgth) is simply a sps where the multisets have a single element
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sps have multisets so is a sgth a single multiset element still with multiplicity, or a single multiset element with multiplicity one?

(or empty). Then for a sps β we have sgth(β) which is the (multi?)set containing all the different sgth contained
in β (forget the other multiset info).

The proof is then a kind of double induction. First assume there is only one slice in the sps. This is a sort of
WLOG assumption because the slices dont interact with one another during cut elimination and so the inductive
case immediately follows from the single case, by applying it to each of the slices individually.

The second thing inducted on is the depth of the cut. Again WLOG we treat the case of the cut at depth 0
and then observe that (second inductive step) a cut at level d never introduces a cut at level d-1 (inspection of the
elimination rules). Hence we can eliminate cuts level by level.

So a cut at level 0 of an sps with a single slice is WLOG all we need to consider. There are 6 logical rules. Only
one is non-trivial the (!/?d) reduction rule. The others all reduce the number of links in the sps at each reduction
step so we are done. With (!/?d) we need a more subtle measure. The one given by the authors is

|π|log =
∑

β∈sgth(π)

# of links in β

The rest of their proof is pretty intelligible

Theorem.
str
−−→ is SN on AC sps

Proof. The concepts of

• Exponential paths: A path in an sps is a path in one of its flats (so it cannot go through a bang into a box, nor
can it go from one element of a multiset to another). A path is exponential if

– It crosses only !, ?w, ?c or cut links

– It can only cross upwards edges that are either conclusions or premises of ? links (?w, ?c)

– It can only cross downwards the main conclusions of of a ! link that is connected to a cut link
FIX EXPONENTIAL PATH IMAGE

• Expoentntial dependence: Two edges exponentially depend if there is an exponential path between them. For
an edge a then call pred(a) the set of edges such that there is an exponential path FROM a crossing just one
node.

• Wd of an edge, ld of an edge and bang links: Intuitively the width and length of the edge in the proof.

lnπ(a) =


1 + lnπ( main conclusion of ! link ) + sup

γ∈ slices of ! box
ln(aγ)

a is an auxilery conclusion of some
! link and aγ is the conclusion corre-
sponding to a in the slice γ

1 + supb∈pred(a)lnπ(b) else

Note that if the edge is not apart of an exponential path then it will have length one because its set of predices-
sors will be empty.

wdπ(a) =


1 pred(a) = ∅

wdπ(main conclusion of ! link)
(
1 +

∑
γ∈ slices of ! box

wdγ(aγ)
)

a is an auxilery conclusion of some !
link

1 +
∑

b∈pred(a)
wdπ(b) else

Note that if a is the auxilery conclusion of a bang link then its unique predicessor is the main conclusion of
the same bang link.

These definitions are extended to !-links by begin applied to the main conclusion edge.

7



Are essential in defining the measure on which the induction takes place. Note that the assumption of AC is here
used to make these quantities Wd and ld well definied. This is because the only way an exponential path could be
infinite (in a finite graph) is if there were cycles.

The measure is then
|π| =

∑
ℓ∈!0(π)

wdπ(ℓ)(lnπ(ℓ) + |πℓ |)

Where !0(π) is the set of depth 0 bang links and πℓ is the sps associated to the bang link ℓ.
One sees from the definition that the length and width are invariants of module changes (plugging in different

modules to one hole contexts, under some hypotheses will not change the ln and wd). In particular fact 3.9 states
that if all the pending edges of the module have exponential dependence on edges of the one hole context then when
plugging in a different module the corresponding edge will have the same wd and ln (because by hypothesis the
exponential dependence of that pending edge is ONLY in the one hole context and the measures are built out of
exponential dependenec). It also states that the wd and ln of an edge of the one hole context is determined only by
the ln and wd of the pending edges of the module being plugged in (also obvious because the one hole context must
interact through these pending edges and the wd and ln measures capture recursively the internal structure).

The proof makes a lot of the same simplifying moves as the previous SN proof. So we restrict to the case where
the proof has exactly one slice and notice that the str reduction steps preserve this property (they dont increase the
number of slices at the reduction level; by inspection of the rules). We also only deal with cuts at depth 0 with the
induction being immediate.

The proof is in three cases one for each str rule, these are further divided into two parts each.

• Showing that for every conclusion d of the sps its corresponding conclusion b⃗ of the reduced sps it holds that

ln(d) ≥ ln(d⃗) wd(d) ≥ wd(d⃗)

• It will follow from the proofs of these facts that the measure strictly reduces at each step.

Case (!/?w): Is left as an exercise. The width and length of each of the conclusions will strictly decrease
because this reduction step erases the box (width) and erases the bang link (length). Hence the measure also strictly
decrease.

Case (!/?c): The key observations are that there are edges in the redex that have the same length and width
allowing one to derive inequalities. Moreover one can split the measure into two parts, measuring the link being
reduced and measuring all the others.

In this case one notices that !0(α) = {o} ⊔ S and that the reduction does not effect S, i.e. every edge and link in
S has a unique residue, S⃗ . So if α ⇝ α′ we have that !0(α′) = {o⃗1, o⃗2} ⊔ S⃗ . (figure 15 in the paper is essential to
understand the naming convention here)

reproduce the figure

And this gives
|α| = wd(o)(ln(o) + |πo|) + |S |

|α′| = wd(o⃗1)(ln(o⃗1 + |π
o⃗1 |) + wd(o⃗2)(ln(o⃗2 + |π

o⃗2 |) + |πo|) + |S⃗ |

In this case one gets equality. In the calculuation the following two equalities are shown

ln(d) = 1 + sup(ln(d⃗1), ln(d⃗2)) wd(d) = wd(d⃗1) + wd(d⃗2)

where d is an auxilery conclusion of the reduced ! link.
Now the result follows because it is clear that |S | = |S⃗ | and from the equalities the strict inequality of

wd(o)(ln(o) + |πo|) > wd(o⃗1)(ln(o⃗1 + |π
o⃗1 |) + wd(o⃗2)(ln(o⃗2 + |π

o⃗2 |)

follows

Case (!/!): In this case one notices that !0(α) = {o, u} ⊔ S and !0(α′) = {u⃗} ⊔ S⃗ . (figure 16)
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reproduce the figure

Hence
|α| = wd(o)(ln(o) + |πo|) + wd(u)(ln(u) + |πu|) + |S |

|α′| = wd(u⃗)(ln(u⃗ + |πu⃗|) + |S⃗ |

Now we have that ln(u) = ln(u⃗) and wd(u) = wd(u⃗) after some staring at the different edges (in particular the
only one that would cause a problem is the edge involved in the cut however this doesnt contribute to the length or
wd becuase you cant travel up such an edge in an exponential path).

Similar to the first case one then shows that for an auxilery conclusion of o one has ln(d) = ln(d⃗) and wd(d) ≤
wd(d⃗) and then combines it with

wd(u⃗)(ln(u⃗) + |πu⃗|) < wd(u)(ln(u) + |πu|) + wd(o)(ln(o) + |πo|)

Theorem.
logℓ
−−−→ is locally confluent

Proof. Recall that the ℓ reductions are non-erasing and act on labelled sps. Recall that local confluence is
allowing the use of reduction steps in the reflexive transitive closure of the reduction relation. It is enough to show
local confluence on the level of slices for the same reason we could assume there was only one earlier.

Now because we have to show local confluence we need to show that for any two logℓ reductions there is a
sequence of reductions that relates them. Unfortunately there are five reduction relations and therefore 5 + 4 + 3 +
2 + 1 = 15 combinations. In the paper they treat of only one. It is by inspection effectively.

Theorem.
strℓ
−−→ is locally confluent

Proof. Again you have to inspect the cases, in this proof there are only two reduction relations so only 3
combinations. They show two in the paper.

Theorem. For every sps the diagram commutes

⟨π, ℓ⟩ ⟨π2, ℓ2⟩

⟨π1, ℓ1⟩ ⟨π3, ℓ3⟩

strℓ

logℓ

strℓ∗

logℓ+

Proof. Restrict to one slice in the sps. Call r the cut link reduced in the logℓ step and call t the cut link reduced
in the strℓ step.

Case 1: r has depth 0: The reduction of t does not affect r.

Case 2: t is depth 0 r contained in !-link o: Note that o is the !-link containing r at depth 0. If o is not involved
in the t cut then we are fine. So there are some cases with o being different edges in the two cuts (!/?c), (!/!). These
cases are just by inspection too.

Case 3: t and r are in boxes: They are both contained in some bang link at depth zero. If its a different bang
link we are done. If its the same link then the box reduces in the two directions of the diagram, then applying the
induciton hypothesis we are done (either the cut r is in this box and we apply above or we apply this case again and
go deeper). So the sps that fits in the diagram is the sps where the box containing the cuts being reduced is replaced
by the box that was given by applying the induction.

Theorem. Given a LL net β then sl(β) ∈ WN¬e

9



Proof. This proof has two parts. Understanding the translation of a LL net into sps and then applying Girards
reducibility candidates to this object

Translating LL nets to sps The main difference is additive boxes. sps has additive links (unitary), in LL however
they are handled via boxes. There is also the simplifying fact of the correctness criterion, a LL net is always
switching acyclic moreover it has typed edges so all its cuts are reducible.

page 50 question

The slicing of an sps is definied by induction of a sequentialisation (translation of the net to some sequent
calculus style proof) of the net. The authors state that slicing is independent of the sequentialisation however it
seems this is inconsequential to the proof(because all LL nets are sequentialisable anyway). Now they give a formal
definition of all cases, here is a summary

• If the net is an sps then leave it alone

• Look at the conclusions of the proof and "climb up" the wires, if you pass an sps link then leave it and slice
one up

• If you reach a quantifier remove it and its conclusion connect the hypothesis up and slice one up

• Slicing a bang link just slices the box etc

• The only one where something non-trivial happens is slicing an & box. Let β be the & link and β1 and β2
be the left and right, respectively, boxes of the link. Then sl(β) is given by adding a &i link to every slice of
sl(βi) on its main output and just plugging in the other wires. Then taking the union of these multisets.

&

slice

sl(β1) sl(β2)

+

...

β1 β2

... ...

... &1 &2

...

Reducibility Candidates First a term is a LL net with a distinguished conclusion (the type). If you have two
terms, one of type A and the other of type A⊥ then we can form CUT (β, β′) by connecting the distinguished
conclusions through a cut link.

Given a set of terms X of the same type, A, we form

X⊥ = {β′ ∈ terms of type A⊥ : ∀β ∈ X sl(CUT (β, β′)) ∈ WN¬e}

Note that
X contains axiom link =⇒ sl(X⊥) ⊆ WN¬e

sl(X) ⊆ WN¬e =⇒ X⊥ contains axiom link

Now we will define some operations on terms (with types); i.e. sets of proofs with designated conclusions.
Designated conclusions are here denoted by solid dangling edges. Let R,T be term collections of proofs of respec-
tive types A and B. Let r ∈ R and t ∈ T

R ⊗ T

is all proofs of the form

⊗A B

A ⊗ B

r t

⊕i
BR

is all proof of the form

r

⊕i

A

A ⊕1 B B ⊕2 A10



§R

is all proofs of the form

r

?C A

!

?C!A

∃R

is all proofs of the form

r

A[a]

∃

∃a.A

Note the subtlety with §R, it is the collection of terms formed on where r ∈ R of such a form. So in particular
even if R is nonempty, it may not contain any nets that contain a ?C conclusion, hence §R would be empty ([?]).

A reducibility candidate of type A is a colleciton of terms X of type A such that

• X , ∅

• sl(X) ⊆ WN¬e

• X = X⊥⊥

Now given a proposition A (type) with FV(A) ⊆ a = {a1, ..., an}, and a sequence of reducibility candidates
X = X1, ..., Xn of respective type B = B1, ..., Bn then we define the reducibility candidate R(A[X/a]) of type A[B/a]:

• R(1[X/a]) = {1}⊥

• R(⊤[X/a]) = S N(⊤) the set of strongly normalising terms of type ⊤

• R(ai[X/a]) = Xi

• R(A

&

B[X/a]) =
(
R(A[X/a])⊥ ⊗R(B[X/a])⊥

)⊥
• R(A&B[X/a]) = (⊕1

BR(A[X/a]⊥) ∪ ⊕2
AR(B[X/a]⊥))⊥

• R(?A[X/a]) = (§R(A[X/a]⊥))⊥

• R(∀b.A[X/a]) =
(
{t ∈ terms(∃b.A⊥[B/a]) : exists a Y a RC of type C with t ∈ ∃R(A⊥[X,Y/a, b])}

)⊥
This is extended to arbitrary types through orthogonality, i.e. the definition

R(A⊥[X/a]) = R(A[X/a])⊥

its not clear in the paper how the quantifier is definined possible typo in it...?

Lemma: The ⊥ of a set of proof is always a RC; A⊥⊥⊥ = A⊥.
Corollary: R(A[X/a]) is a RC for any type A and any appropriately sized sequence of RC X.
This is fantastic, now there are reducibility candidates of any type that we can use to cut against the conclusion

of any proof. Moreover we know how they work with substitution:

Lemma:
R(A[C/b][X/a]) = R(A[X,R(C[X/a])/a, b])

Where the bold substitution is that of RC and the other one is normal substituiton.
Completely unclear on what the right hand side even means...

So now we will show that every term is reducible: Given a proof β with conclusions C = (C1, ...,Cn) and
FV(C) ⊆ a = (a1, ..., an) then we say β is reducible if for any appropriately sized sequence of RC X of type B

11



cutting β[B/a] against an arbitary t ∈ R(C⊥[X/a]) slices to a WN¬e sps. Note that C is a sequence and therefore t
is a sequence where ti ∈ R(C⊥i [X/a]), moreover by definition we have that ti is of type C⊥i [B/a] so the cut makes
sense. This can be visualised as

β[B/a]

...

C1[B/a] Cn[B/a]

t1 tn
...

cut cut

C⊥1 [B/a] C⊥2 [B/a]

This is sufficient because We can then let B = a and hence ti has type C⊥i [B/a] = C⊥i [a/a] = C⊥i and
β[B/a] = β. Moreover one oserves that by definition R(C⊥) = R(C)⊥ as well as sl(R(C)) ⊆ WN¬e hence by our
properties of ⊥ we know that R(C)⊥ = R(C⊥) contains an ax link. So if a net is reducible then in particular

β[B/a]

...

C1[B/a] Cn[B/a]

cut cut

C⊥1 [B/a]

C⊥2 [B/a]

ax ax
...

C1[B/a]
Cn[B/a]

which is WN¬e iff β is (clearly because the cut elimination removing the ax link detour is non-erasing).
So we need only check that they are all reducible. This is done by 16 cases one for each rule of LL; or more

precisely induction on a sequentialisation of the net. So there is a sequent calculus proof coresponding to the net
and the last rule of this proof must be one of the 16 LL rules, hence 16 cases. The induction is then assuming the
rest of the net is WN¬e and you apply this rule then is that WN¬e.

It becomes about inspecting the shape of the two nets cut together, because we have t ∈ R(A) for some type A
we know (by the inductive definition of R) some of the structure of t and hence we can recurse into that structure.
Note that the substitution Lemma is needed in the case of quantifiers.

Did the substitution lemma get used elsewhere?

Proof Nets Formalism
UNDER CONSTRUCTION

This is the notation for equivilence classes of proofs. It can be slick or quite complicated. Its nice for the
multiplicative fragment, however things get out of hand with the exponentials and "boxes". I dont yet understand this.

You can build up the proof nets inductively or you can define them as those proof structures that satisfy the long
trip condition. This is effectively saying something about the fact that you can embed a circle into the graph in a way
that goes through each node exactly twice..

Theorem. A proof structure is a proof net iff it has a long trip.

12



Differential Linear Logic

The Differential Lambda Calculus
2.1.1 Linearity

In λ-calculus linearity means that an argument is used exactly once. This is naturally connected to the concept of head
reduction which is a reduction strategy evaluating the subterms in linear position.

There is a lot more on head reduction I think to look into

In algebra linearity means commutation with sums and scalars. The goal of DiLC is to connect these senses of
linearity.

2.1.2 Differentials

In differential geometry we think of the differential of a map f : M → N between smooth manifolds as a smooth map
linear map between vector spaces D fp : TpM → T f (p)N or in more generality

D f : M → Hom(TpM,T f (p)N)

with D f (p)(v) sometimes denoted as D fp · v.
In ordinary vector calculus the directional derivative of a map f : Rn → R along a vector ν is given by

Dv f (x) = lim
h→0

f (x − hv) − f (x)
h

Alernative notation is that you dot product the derivative vector with the vetor along which you are taking the derivative. write this out, I
think this will
make their nota-
tion more trans-
parent?

2.1.3 The Calculus

The terms of the calculus over some commutative unital semi-ring R = {a, b, ...} are given by a countable set of term
variables {x, y, ...} and

s, t ::== x|λx.s|(s)t|Dis.(t1, ..., tn)|0|as + bt

The following identities are then made on terms:

• α-equivilence

• (as + bt)u = a(s)u + b(t)u

• λx.(as + bt) = aλx.s + bλx.t

• Di1,...,in s = Diσ(1),...,iσ(n)s where σ is a permutation

• Di(Di1,...,in x · (u1, ..., un)) · u = Di,i1,...,in x · (u, u1, ..., un)

•

Di(Dn
1λxt · (u1, ..., un)) · u =

Dn+1
1 λxt · (u, u1, ..., un), i = 1

Dn
1λx(Di−1t · u) · (u1, ..., un), i > 1

• Di(t)v · (u1, ..., un) = (Di+1t · (u1, ..., un))v

• Di(
∑

ass) · (
∑

buu) =
∑

asbuDis · u

A technical remark from [?] is that a single differential Ds suffices where originally ER had defined one piecewise
Dis. ER set this up a little differently, likely for the purposes of certain proofs, as well as making the definition as just
the free R module generated on some set of terms. We want the differential to mimick the behaviour of the normal
derivative, intuitivley reading Dis · t as the derivative of s along t with respect to the ith variable.
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Lemma. Di(D js · u) · v = D j(Dis · v) · u
Analogous to the interchange of partial derivatives on smooth functions. If we let u, v ∈ Rn and denote vi =

(0, ..., 0, vi, 0, ..., 0) we get that
Dvi Du j f (x) = Du j Dvi f (x)

Substitution is then defined inductively in the natural way

• Di1,...,in y · (u1, ..., un)[t/x] = Di1,...,in y[t/x] · (u1[t/x], ..., un[t/x])

• Dn
1λyv · (u1, ..., un)[t/x] = Dn

1λy(v[t/x]) · (u1[t/x], ..., un[t/x])

• (v)w[t/x] = (v[t/x])w[t/x]

• (
∑

avv)[t/x] =
∑

avv[t/x]

with some restrictions on free variables etc.
Linear substitution is then defined as follows: We denote the linear substitution as the partial derivative of s with

respect to x along u as ∂s
∂x · u and is given inductively why is this not

just the direc-
tional deriva-
tive?

•
∂Di1,...,in y · (u1, ..., un)

∂x
· v = δx=yDi1,...,in v · (u1, ..., un) +

n∑
i=1

Di1,...,in y · (u1, ...,
∂

∂x
ui, ..., un)

•
∂Dn

1λyv · (u1, ..., un)
∂x

· t = Dn
1λy(
∂v
∂x
· t) · (u1, ..., un) +

n∑
i=1

Dn
1λyv · (u1, ...,

∂

∂x
ui · t, ..., un)

•
∂(v)w
∂x
· u = (

∂v
∂x
· u)w + (D1v · (

∂w
∂x
· u))w

•
∂

∂x
(
∑

avv) · u =
∑

av
∂v
∂x
· u

There is a passing resemblance to the chain rule here in the application case.
The operation wants to be linear, so in the case of the application the v is in a linear position so we can take its

partial derivative without problem. The w is not in linear position however so applying the operation to it must take
two steps, replacing the (v)w application with (D1v ·w)w to get a "linear copy of w" then applying the partial derivative. why is this a

linear copy?

Lemma.
∂Dit · u
∂x

· v = Di(
∂t
∂x
· v) · u + Dit · (

∂u
∂x
· v)

Lemma. If x is not free in t then
∂t
∂x
· u = 0

Obvious parallel to the partial derivative of a constant (with respect to some variable) being zero

Lemma. If y is not free in u
∂

∂x
(
∂t
∂y
· v) · u =

∂

∂y
(
∂t
∂x
· u) · v +

∂t
∂y
· (
∂v
∂x
· u)

Combining the last two we get

Lemma. When y is not free in u and x is not free in v

∂

∂x
(
∂t
∂y
· v) · u =

∂

∂y
(
∂t
∂x
· u) · v

Interchange of second order partial derivatives.
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The substitutions work well together

Lemma. If x and y are distinct and y is not free in u or v then

∂t[v/y]
∂x

· u = (
∂t
∂x
· u)[v/y] + (

∂t
∂y
· (
∂v
∂x
· u))[v/y]

Lemma. If x is not free in v and y is distinct from x we have

(
∂t
∂x
· u)[v/y] =

∂t[v/y]
∂x

· (u[v/y])

Finally we can decompose the derivatives into finite sums of simpler terms (towards a Taylor expansion):

Lemma.

Lemma.

2.1.4 Confluence

The last thing to add to the calculus is a reduction rule. We extend beta reduction to include the following reductions:

• (λx.s)t⇝ s[t/x]

• D1λx.s · u⇝ λ( ∂s
∂x · u)

It takes quite some work to then show that this is well defined etc.

Theorem. This relation is confluent.

Theorem. If two ordinary lambda terms are beta equivalent in the differential lambda calculus then they are are beta
equivalent in ordinary lambda calculus.

2.1.5 Strong Normalization

We introduce types to the system with a collection of atomic types and then given two types A, B then A→ B is a type.
The normal lambda typing rules from lambda calculus carry over with some new typing rules:

Γ ⊢ s : A1, ..., Ai → B Γ ⊢ u : Ai (Differential Application)
Γ ⊢ Dis · u : A1, ..., Ai → B

Γ ⊢ s : A Γ ⊢ t : A (Linear Combination)
Γ ⊢ as + bt : A

(Linear Combination)
Γ ⊢ 0 : A

Then if the semi-ring overwhich we have defined the calculus has the following properties

• ab = 0 =⇒ a = 0 ∨ b = 0

• a + b = 0 =⇒ a = b = 0 (positivity)

• ∀a ∈ R there are only finitely many b, c ∈ R with a = b + c

then we can prove that this is a strongly normalising calculus. With only positivity then we still have weak normalisa-
tion.
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2.1.6 Taylor Expansion

Theorem (Leibniz Rule). For terms t and u, and distinct variables x and y, such that y is not free in u we have that

∂t[x/y]
∂x

· u = (
∂t
∂x
· u)[x/y] + (

∂t
∂y
· u)[x/y]

contrast
∂(uv)
∂x
= u
∂v
∂x
+ v
∂u
∂x

im not really seeing it ...

"clear logical meaning, expressing how derivation behaves when interacting with a contraction in cut elimination"?

Theorem (Leibniz Formula). Under the same restrictions

∂nt[x/y]
∂xn · un =

n∑
p=0

(
n
p

) (
∂nt

∂xp∂yn−p · u
n
)

[x/y]

Lemma (Deriving Applications). Let t = t1, ..., tk be a sequence of terms, x a variable and u a simple term. y a distinct
variable to x not free in t or u. x is not free in u. Then if n ≥ 1 we have

∂n(x)t
∂xn · u

n = n
∂n−1(u)t
∂xn−1 · u

n−1 + (
∂n(y)t
∂xn · u

n)[x/y]

Which has the special case

(
∂n(x)t
∂xn · u

n)[0/x] = n(
∂n−1(u)t
∂xn−1 · u

n−1)[0/x]

Theorem (Taylors Theorem). If s and u are terms of the ordinary lambda calculus and ξ is a distinguished variable
such that (s)u ≃β ξ then there is a unique n ∈ Z with

(Dn
1s · un)0 ;β 0

Moreover for this n we have that
(Dn

1s · un)0 ≃β n!ξ

Hence the Taylors formula holds

s(u) =
∑
n≥0

1
n!

(Dn
1s · un)0

s(u) instead of
(s)u now wtf, its
not even in the
syntaxProof. Sketch.

Argue from the fact that (s)u reduces to ξ that it must be of a certain form, assuming that it is in head normal
form without loss of generality (all terms are beta equivilent to a unique head normal form term).

Notice that form has a recursive structure.
Define a number that is related to the number of beta reductions to induct on. It counts the number of substi-

tutions of successive head variables of s in the linear head reduction of (s)u.
Using the previous Leibniz formula and deriving application lemma to compute (Dn

1s ·un)0 ≃β n(Dn−1
1 s′ ·un−1)0

where s’ is part of the recursive structure.
The result then follows.

The example of the self application of λx.xx is calculuated to have taylor expansion 0. That makes no
sense? So this
term is identi-
cally 0? They
use equality in
the thm between
the application
and the Taylor
series.. What do
they mean?
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Differential LL
2.2.1 Motivation

The notion of linearity can be seen in linear logic as well. A proof can be called linear in a hypothesis if that hypothesis
is used exactly once during cut elimination i.e. not duplicated or eliminated.

In everyday mathematics derivations take a nonlinear map (between manifolds) and give a linear map (between
vector spaces), the new structural rule of coderiliction mimic this behaviour of taking a nonlinear proof and making it
linear (in the above sense). This is dual to deriliction which take a linear proof and makes it nonlinear. Erhardt stresses
that this coderiliction gives a !A without making it duplicable, this makes this fragment have some nice properties
(strong normalisation, all proofs are linear combinations of simple proofs) . but its not linear

like MLL is so
what are they
talking about.

“ one really needs to take the point of view of computational trinitarianism in order to understand the
transition from linear logic to differential linear logic. It is more difficult to understand naively the proofs
of differential linear logic than the ones of linear logic. ”

- nlab

The idea of computational trinitarianism is that computation, logic and category theory are three sides of the same
coin. They are all talking about the same object in different ways. Taking this really seriously means that if you observe
something in a computation it must have a logical meaning, and if you see some categorical structure it must have a
computational and logical meaning.

2.2.2 Syntax

In outline it is full LL with some new deduction rules

Γ, !A ⊢ B
(Coderiliction)

Γ, A ⊢ B

Γ, !A ⊢ B
(Cocontraction)

Γ, !A, !A ⊢ B

Γ, !A ⊢ B
(Coweakening)

Γ ⊢ B

⊢ Γ ... ⊢ Γ (sum)
⊢ Γ

What is given in [?] is a bigger term calculus and full cut elimination transformations. The term calculus has more
information in typing and contexts which make its semantics in categories maybe a little clearer, maybe not. The sum
rule is written

∀i ∈ [n] Φ ⊢ pi : Γ and µi ∈ R
(sum)

Φ ⊢
∑
µi pi : Γ

so the linear combination information is in the context not the type. This is inter-
esting to me
because the type
to me is the log-
ical part and the
term is the pro-
gram. No but I
think the con-
text is the actual
proof, this is a
term calculus for
the proof, so the
left of the : can
be seen as the
lambda term or
the actual proof
itself and the
right is the type
or the thing that
is proved. This
explains the use
of the structural
rules and dere-
liction rules in
the context.

2.2.3 Basic Results

Yes the system is confluent and has normalization.

2.2.4 What does this have to do with differentiation

https://www.pls-lab.org/en/Differential_Linear_Logic has a nice little paragraph. Basically in some cat-
egorical models we have a derivation map that takes a function f :!X → Y (nonlinear because of the bang)

D( f ) :!X → (X ⊸ Y)

i.e. a map that takes a point in the domain of f and gives a linear (no bang) map at that point, intuitively a linear
approximation to the function there.
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Stratified Linear Logic

Complexity Theory
3.1.1 Recall Acceptance

We say that a TM, M, accepts w iff there is a sequence of configurations starting at w and ending at the accept state.
The language of a TM, L(M), is the set of all accepted strings. A language is Turing recognisable iff there is a TM that
enumerates it.

3.1.2 Complexity Classes

Notes on the "Advanced Theoretical Computer Science" subject slides.

Definition: Big O Notation We say that g ∈ O( f ) or sometimes g = O( f ) iff there is some n0, c ∈ N such that for
every n > n0 we have that

g(n) ≤ c f (n)

Asymptotically g is bounded by f.

A function t : N→ N is polynomial iff ∃r ∈ N such that t ∈ O(nr). The function hierarchy looks like the following

1 < log(n) < n < nc < exp((log(n))c(log(log(n)))1−c) < cn < n! < cbn
< Ackerman functions etc

Formally an algorthm is a Turing Machine. Running the algorithm on some data is having that data encoded on
the tape of the TM when it is run. The runtime of the algorithm is then the number of steps that it takes for the TM to
halt (enter its accept state). The idea in complexity is to bound the runtime as a function of the length of the input.

Definition: Time Complexity of TM The time complexity of given TM, M, is

tM(n) = maxw∈Σn {m : M(w) halts after m steps }

So the longest time for the machine to halt on any given length n input.

The complexity class of a function is then the collection of all languages that are decided in less than the time of
the function i.e.

T IME(t) = {L : L is a language that is decided by some TM M with tM ∈ O(t)}

Theorem. Every linear time language is regular.

Different types of TM can have slightly different complexity properties (there are algorithms which can be given
faster implimentations on two tape vs one tape machines). They are however closed under certain classes.

Definition: Polynomial Time P is the class of languages decidable by a deterministic TM in polynomial time

P =
⋃

k

T IME(nk)

Any (reasonable) deterministic model of a TM will have the same class P.
A verifier for a language A is a deterministic TM (algorithm) M such that

A = {w : ∃c, M accepts ⟨w, c⟩}

Then a language is polynomial time verifiable if this algorithm is polynomial time in the length of w.
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Definition: NP
NP = { languages with a polynomial verifier}

=
⋃

k

NT IME(nk)

so the collection of all languages decidable by a non-deterministic TM in polynomial time.

The runtime of a non-deterministic TM (NTM) is the maximum over all branches of the computation. Again the class
NP is robust against changes to model of non-deterministic computation.

3.1.3 Hardness

Definition: A language A reduces in polynomial time to a language B, denoted A ≤p B iff there is an algorithm
f such that

w ∈ A ⇐⇒ f (w) ∈ B

B is NP hard iff for any A ∈ NP we have that A ≤p B. B is NP complete (NPC) if in addition B ∈ NP. There are
several interesting theorems about this

• A ≤p B, B ∈ P =⇒ A ∈ P

• B ∈ NPC, B ∈ P =⇒ NP = P

• B ∈ NP − hard, B ≤p C =⇒ C ∈ NP − hard

• P , NP =⇒ NPI = NP \ (P ∪ NPC) , ∅ i.e. if P is not NP then there are non-polynomial non-NP complete
problems.

P is closed under compliment however it is not known whether the same is true of NP. The hypothesised class is
called co-NP i.e.

co − NP = {L : L C ∈ NP}

Stratified LL: LL§
3.2.1 Motivation

There have been two successful strategies for creating subsystems of LL with bounded complexity properties. The
idiosyncratic soft logic of Lafont [?] and a collection of systems from Girard, Terui, Baillot, Mazza and others that
utilise a system of stratification or levels. Similar to type theory the idea is to label sequents with a "level" and then
disallow the communication of levels (through the deduction rules only allowing cuts and other operations to happen
on the same level). After sever years of refinement [?] introduced a general framework in which to understand these
logics using a notion of stratification. The logic is called Stratified Linear Logic and abbreviated to LL§

The general insight is that when stratification is tied to the exponentials complexity properties emerge because
those are the operations in LL that are responsible for the computational power.

3.2.2 The Calculus

The calculus has all the formulas of LL with one new modality A ::== A|§A, that is self dual (negation defined as)
(§A)⊥ ≡ §A⊥. The sequent calculus is now a 2-sequent system, which just means that each formula has a label of level
attached.

Identity group:
axiom

⊢ Ai, A⊥
i ⊢ Γ, Ai ⊢ A⊥

i
,∆

cut
⊢ Γ,∆

Structural Rule:
⊢ Γ exchange (Γ′ is a permutation of Γ)
⊢ Γ′
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Logical Rules:

one
⊢ 1i

⊢ Γ, Ai ⊢ Bi,∆
times

⊢ Γ, (A ⊗ B)i,∆

true
⊢ Γ,⊤i

⊢ Γ, Ai ⊢ Γ, Bi
with

⊢ Γ, (A&B)i

⊢?Γ, Ai
promotion

⊢?Γ, !Ai

⊢ Γ, Ai
deriliction

⊢ Γ, ?Ai

⊢ Γ, Ai
for all (x not free in Γ)

⊢ Γ,∀x.Ai

⊢ Γ
false

⊢ Γ,⊥i

⊢ Γ, Ai, Bi
par

⊢ Γ, (A

&

B)i

(no rule for zero)

⊢ Γ, Ai
left plus

⊢ Γ, (A ⊕ B)i

⊢ Γ, Bi
right plus

⊢ Γ, (A ⊕ B)i

⊢ Γ
weak

⊢ Γ, ?Ai

⊢ Γ, ?Ai, ?Ai
contraction

⊢ Γ, ?Ai

⊢ Γ, Ai[t/x]
exists

⊢ Γ,∃x.Ai

Γ, Ai+1
paragraph

Γ, §Ai

Some things to notice: The cut, as well as other logical rules must take place between two formulas of the same
level. The paragraph modality can decrease the depth, and is the only rule that changes the index of a formula.

There is a new cut elimination transformation to deal with the new modality

Γ, Ai+1
paragraph

Γ, §Ai

∆, A⊥
i+1

paragraph
∆, §A⊥

i

cut
Γ,∆

⇝ Γ, Ai+1 ∆, A⊥
i+1

cut
Γ,∆

One last modification is to restrict the collection of valid proofs to only those that have all formulas of the same
level in the conclusion, this ensures that ⊢ A, B is provable iff ⊢ A

&

B is provable.

3.2.3 Basic Results

The system enjoys cut elimination.
There is a (Z,+) action on formulas k • Ai 7→ Ai+k and proofs k • π 7→ the same proof with all formulas acted on

by k.

Lemma. ⊢ Γ is derivable iff ⊢ k • Γ is derivable

Hence it is not the level that matters but the relative level within a proof.
There is a proof net formalism with all the usual properties and there is a categorical construction that can be

given to any model of LL to make it a model of LL§

Inclusion of Other Logics
There are several other LL variants that can be easily shown to sit inside LL§. A list of the ones mentioned in [?] are
LLL, ELL, L3, L4 and obviously full second order LL.
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3.3.1 LL

Simply remove the paragraph deduction rule and you have second order LL.

3.3.2 LLL

Light Linear Logic, Girards logic of polytime, is given when we restric to the fragment where stratification corresponds
to exponential depth (where depth of exponentials is explained in [?]).

Make this explicit and precise. Connect to Asperti and Teruis LALL and Mazzas L4 which are all polytime too

3.3.3 ELL

Girards system for Elementary (towers of exponentials) time computations. This is given by restricting to sequents of
the form ⊢ §∆i,Γi+1, where there are no paragraphs in Γ.

3.3.4 L3

The subsystem of Baillot and Mazzas Linear Logic by Levels that captures elementary functions. We simply require
that every exponential is preceeded by a §. The paper then goes on to give several different classifications of L3 [?]. Can we extend

them to L4?

Interactive

Geometric

Semantic

Denotational Semantics
References are mainly [?], [?], [?], [?], [?].

The Idea of Semantics
The idea of semantics is that of creating invariants. It allows us to distinguish the potentially complicated objects of the
logic in a framework where there are more possible moves. Another possible motivation is that the things that a natural
semantics does and does not see may be reasonable candidates for notions of equality between proofs / programs
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Heaven

Earth

LOGIC PROOF CONCEPT

The rules of correct reason A use of the rules to reason The essential structure of the proof

LL π, π′

Equivilence Classes of ProofsSyntax Proofs
α

β

cut eliminationDiLL

λ −Calculus
Programs

Complexity class

⟦ − ⟧−1

Models

contexts where proofs and programs are "essentially" the same

4.1.1 Model Theory

There is nothing at the bottom of mathematics
but philosophy

Pepijn Schmitz
Stack Exchange (second link)

This is a part of logic and set theory that has never made sense to me and as such I want to go through some
materials with a philosophical and sceptical eye. I will attempt to note down any epiphanies on the logical validity of
this area of inquiry as I see it.

Ok so i read some stack exchange posts lol, but there was some wisdom there:

https://math.stackexchange.com/questions/4091198/represent-the-definition-of-elementary-substructure-in-fol
https://math.stackexchange.com/questions/1334678/does-mathematics-become-circular-at-the-bottom-what-is-at-the-bottom-of-mathema
https://math.stackexchange.com/questions/173735/how-to-avoid-perceived-circularity-when-defining-a-formal-language
https://mathoverflow.net/questions/47399/dont-the-axioms-of-set-theory-implicitly-assume-numbers
https://math.stackexchange.com/questions/201703/an-apparently-vicious-circle-in-logic
https://math.stackexchange.com/questions/121128/when-does-the-set-enter-set-theory

I want to summarise what I take to be the main take away from these discussions. There seem to be a few different copes when it comes
to foundations. Clearly the concepts that we are attempting to make rigerous are employed in the definitions, we look at sets when defining logic,
number and logic when defining set, set and logic when defining number etc. These concepts appear all to readily to our mathematical imagination
and it is easy to gloss over them without engaging seriously in the apparent circularity. The main "escapes" from these circles seem to be

• The Meta-Theory: You bring something to the game and only understand or talk about a system within another. These meta systems will
be of varying formality. For instance we may have an "intuitive" set theory (and number theory) that we use to build the concept of FOL
and then we use this combined system to formalise ZFC. The meta theory is always (necissarily) more powerful than the object language,
because it must contain the object language.
Even more starkly to begin with any kind of discussion of language we need notions of repetition, sameness, character, shape etc
Again we must bring to the table more than we are able to formalise. Essentially all discussions take place within a metalanguage and this is
what allows us to move forward, taking the metalanguage as given we formalise within it. What lies at the bottom must be the total language,
a language that contains all others within it. If I dare to apply my regular concepts to such an (imaginary) object then I would see that it
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is necissarily inconsistent and therefore we are reasoning about our systems inside a meta theory that is ultimately inconsistent. Does this
make the endeavour meaningless? It seems I must assume everything to get something. Well I would say that I dont need to actually take for
granted the entire (inconsistent) metatheory but only a fragment.
This is often done by developing ZFC inside a casual ZFC

• Everything is Logic: ZFC can be formalised as a first order language purely as strings, axioms and inference rules (as opposed to thinking
about a collection of axioms in a language generated as a first order theory (using logic to give inference rules etc)). It is purely its own entity.
It seems that we still need the concepts inherent in writing symbols, constructing strings and changing strings. This seems to be something
and so we have recourse to the above meta-theory idea, however it does seem a reduction in the conceptual bagage. We have reduced it to a
physical idea.

• No Sets Foundations: When the term set is used when developing foundations and logic "there is no ontological commitment" to the sets of
ZFC. There is in fact a computational / algorithmic interpretation to what is going.

“ But it can also be read in a different way. The definition can be used to generate a completely effective procedure that a
human can carry out to tell whether an arbitrary string is a formula. In this way, we can understand inductive definitions in a
completely effective way without any recourse to set theory. When someone says "Let A be a formula" they mean to consider
the situation in which I have in front of me a string written on a piece of paper, which my parsing algorithm says is a correct
formula. I can perform that algorithm without any knowledge of "sets" or ZFC.Another important example is "formal proofs".
Again, I can treat these simply as strings to be manipulated, and I have a parsing algorithm that can tell whether a given string
is a formal proof. The various syntactic metatheorems of first-order logic are also effective. For example the deduction theorem
gives a direct algorithm to convert one sort of proof into another sort of proof. The algorithmic nature of these metatheorems
is not always emphasized in lower-level texts - but for example it is very important in contexts like automated theorem proving.

”

“ We know that 2+2=4, not because of number theory or the Peano axioms, but because that reflects our daily experience. ”

Of course all the copes must live inside a meta theory and I have expressed somewhere in a diary somewhere a metaphysical beleif that there
is inteligebility only within a meta theory, so each method is itself stated in a meta theory and comes down to a belif in a given metatheory, for
example a belief in finite computation.

4.1.2 Philosophy and History
Sources:

• part D of "Philosophy and Model Theory" by Button and Walsh. [?]

• Internet Encyclopedia of Philosophy; Semantic Theory of Truth; Jan Woleński [?]

• Tarski’s Truth Definitions (Stanford Encyclopedia of Philosophy) [?]

• What is Tarski’s theory of truth?; Permalink https://escholarship.org/uc/item/2bt294j8 [?]

History The notions of structure and sentence were not well defined for a good portion of the 20th century and they made free use of set
theoretic concepts. (Godel 1932) made use of languages of uncountable cardinality

Model theory started largely informally in works around 1900. These ideas were first formalised in a non model theoretic way and later
formalised into model theory.

Much of this formalisation was into the language of set theory. I took issue with statements of model theory saying so and so was true, but isnt
this what we do when we assert a mathematical claim. No perhaps not, perhaps it is claiming that we could evince a syntactical manipulation from
the axioms to the required theorem through deduction rules. The idea of truth only sits in the background making such statements meaningful..

Perhaps this endeavor is underpinned by Tarskis "Concept of Truth" (Tarski 1983, VIII), the paper and the philosophy.

Philosophy The project of model thoery seems to be underpined by Tarskis theory of truth, outlined in 1933 (1956 in English). Truth was to be
defined semantically and inductively through the concept of satisfaction. This "Semantic theory of truth" was in the vein of Aristotles correspondence
theory of truth.

A key criterion of a good theory of truth to Tarski was that it should include all sentences that were of the form

"x" is true iff x.

this was known as the T-scheme.
Tarski made the move to relativise the notion of truth of a sentence to a given meta-language. This ensures that sentences of a language can

only be true relative to another language (reminisent of the theory of types). i.e. in the T scheme "is true" belongs to a different language than "’x’".

"Schnee ist weiss" is true iff the snow is white

is a classic example of assigning truth conditions to an object language (German) in terms of a meta-language (English). The english sentence
above does not use the object sentence "Schnee ist weiss", it only mentions it. Note that ordinary languages, such as English, contain their own
metalanguages, this is the property of being semantically closed.
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Two criterion motivating Tarskis definition of truth were material and formal correctness. These manifested as the requirment that the definition
does not imply paradoxes in the object or meta-languages (this was part of the motivation for reletivising truth) and material correctness was the
motivation for including the T-scheme.

Hence in model theory (or the standard formalisation there of) we get a presentation of truth for an object language where the meta-theory is
explicitly ZFC.

Important to note is that if we attempt to create a "universal" meta-language, one capable of transcending the heirarchy implicit in the object,
meta-language distinction then it would be neccessarily semantically closed and hence inconsistent. For this reason we limit ourselves to not talking
about truth of sentences in the meta-language. One simply assumes the intuitive concept of truth in the meta-theory.

“ Clearly, SDT is a-criterial. This means that the definition in question does not generate any truth-criterion, although it says what
truth is. If mathematics is taken into account, proof can be regarded as a measure of truth. However, there arises a problem. Let
the symbol Pr denote the provability operator. By the Löb theorem, we have PrA implies A, a theorem very similar to TrA implies A.
But, due to the first incompleteness theorem, the formula A implies PrA cannot be consistently added to the provability logic. Hence,
there is no counterpart of the T-scheme with Pr instead Tr, that is, the scheme PrA iff A. So, we must conclude that proof is not a

complete truth-criterion even in mathematics ”
Jan Woleński [?]

This is clearly schitzophrenic. I dont care about T scheme, I care about proof. I dont care about attaining truth I care about KNOWING I have
attained truth. Replace truth with proof.

There is something like the following happening. The idea is to define a predicate that is true iff the thing it is applied to is true. This can be
thought of inside ZFC as attempting to FIND or show the existence of a predicate that can be used in comprehension to create a set containing only
true sentences. When we write a sentence of a FOL we are implicitly asserting it, i.e. asserting its truth, so that concept is always there, now we ask
is there a logical predicate that can make that distinction itself. This is the question that Tarski answered to me. Obviously "truth" is not a feature of
the language (object language) it is a human concept, so there need to be criteria for when the predicate is sufficiently "like" truth. This is the role of
Tarskis formal and material correctness conditions.

4.1.3 The Fear
I dont know if its in here but the big problem with semantics is that there is no a priori way, or no intrinsic way, to translate between two different
syntaxes. No way to translate between subject languages without first putting them inside a meta language.

I see logic as standing on its own, a pure syntax. To "translate it" is to talk about it in a metalangauage that isnt a priori connected, i.e. The
subject langugae of this meta language isnt necissarily the old logic that we wanted to talk about. In fact it cannot be because one of its properties
(subject / not subject) has changed. So when we for instance instantiate a logic in ZFC and then prove things about it how can we know that what we
are proving is inherent to the logic and not the translation? It may seem like trifling but it is a sincere concern that this meta-mathematical process
of translating a syntactic system into another may be perverting it.

What makes a semantics of LL/DiLL
To know what a semantics of LL we must be clear what a LL is in the first place. It is atomic formulas, connectives,
deduction rules and cut elimination transformations. Changing these things will change what it means to create a
semantics. From our notes on LL we know that the units are

0, 1,⊥,⊤

Unary connectives
!, ?

And binary connectives
⊕,⊗,&,

&

And these things are what remain unchanged between "different" LL’s. In general however the cut elimination rules
are highly idiosyncratic and it is non-trivial to compare the systems with different rules. We shall take a general cut
relation then and call it ∼, leaving the specifics unclear for now, noting only that it is strongly normalising on proofs
and results in a cut free normal form.

Now the way we want to write down a semantics will depend on the structure we are using to represent (1) The
logic in mathematics (2) And the model.

For us this will take the form of categories or ZFC typically. To summarise

Representing a logic as a category: Classifying Category / Syntactic Category: We take the syntactic cateogory
of the logic:

not clear on any of this, but it seems like the slickest way to formulate these things potentially
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Pieces of the Logic Interpretation in ZFC Interpretation in Categories
Formulas A, B, C, ... Sets Objects
Function symbols 0-ary: 0, 1, ⊤, ⊥, Unary: !, ?, (−)⊥, Biary: ⊕,⊗,&,

&

Functions of the same arity Functions on objects of the same arity
Proofs π, π′ ... ...
Equivilence relations on proofs cut, α π ∼ π′ =⇒ ⟦π⟧ = ⟦π′⟧
Deduction Rules ... ... ...

• Objects: α equivilence classes of contexts (lists of sorts)

• Morphisms: Equivilience classes of context morphisms.

• Identity:

• Compositions:

And the fact that composition is associative and works with the identities is immediate.
A model of a the logic is then a functor out of this category.

A Simpler Approach In less generality we can first consider LL ↪→ DiLL ↪→ ZFC by consdiering the set of proofs(
modulo cut equivilence?) P, the set of formulas F and the set of connectives R, then a semantics is a map (set theoretic
function) sending

⟦⟧ : F→ F

P→ P

R→ R = { relations on elements of F}

We want to capture in the semantics is how the deduction rules behave. We want the denotations to be composi-
tional. So for each connective, r, of the logic we want a same arity function on the set A such that

⟦XrY⟧ = ⟦X⟧⟦r⟧⟦Y⟧

This is exactly the idea of a classic model theory.

I think that on formulas there is the condition that if Γ ⇐⇒ ∆ then ⟦Γ⟧ = ⟦∆⟧? This is alluded to in Seely *aut
paper and Girard saying "cannonical isos are satisfied", maybe this should be the same for only some formulas?
(Categorically isomorphism not equality necissarily)

We also want a way to talk about proofs however. To each proof we also simply associate a set. Girard gives the
following conditions:

• Because proofs are considered up to α and cut equivilence we also require if π ∼ π′ then ⟦π⟧ = ⟦π′⟧, where
∼∈ {∼cut,∼α}. Alternitively we can replace P with the set of equivilience classes and then this idea is built in
already.

• The denotation should be a congruence relation in the sense that if ⟦λ⟧ = ⟦λ′⟧ then applying the same logical
rule to λ, λ′ to get π, π′ should result in ⟦π⟧ = ⟦π′⟧

This seems really weird, why should the denotations of formulas be entirely dependent on which logical rules are applied, surely it matters to which of
the formulas they are applied? Look at my handwritten notes for a simple example that doesnt make sense to have the same denotation idk? He has
some other enigmatic comments on this too.

If we restrict our set F to being a collection of objects in a fixed category and out set P to be a suitable collection
of morphisms in that category then we have a categorical semantics. In this case we want the set R to be replaced not
with relations but with endofunctors (or bifunctors etc).

It is natural to consider them as morphisms from their inputs to outputs however there is a technicality here, we
want to send a proof of the sequent Γ ⊢ ∆ a map whose domain "corresponds" to Γ and whose codomain "corresponds"
to ∆. This is why we should consider not just the set of formulas but the set of sequents or at least the set of sequences
of formulas and assign denotations to this.
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Ok the solution is to define using the meta-equivilence A, B ⊢ C,D ⇐⇒ A ⊗ B ⊢ C ⊕ D
Justify this using one of the above principles, its uncomfortable becasue this is outsied the logic, its an equivilence of provability.

a proof to be a morphism
⟦π : Γ ⊢ ∆⟧ ∈ Hom(⊗Γ,⊕∆)

This is a definition, a decision and a largely ad hoc one at that.
Seely also requires that

⟦cut(π|π′)⟧ = ⟦π⟧ ◦ ⟦π′⟧

Could this be derived from the congruence concept of Girard? Its clearly kind of motivated however also somehow not from a general principle just a
vibe.

The final thing to make this properly categorical is to then extend the denotations of connectives to functors instead
of functions on the denotations of objects.

So to summarise: Given the following data

• Formulas

• Connectives

• Deduction rules

• Proofs

• Equivilence relations on proofs

Definition: Semantics A semantics is a map ⟦⟧ assigning to each formula a set and each connective a relation
of the same arrity such that

⟦ArB⟧ = ⟦A⟧⟦r⟧⟦B⟧

Definition: Operational Semantics An operational Semantics is a semantics ⟦⟧ that also assigns to each proof
a set such that if

π ∼ π′ =⇒ ⟦π⟧ = ⟦π′⟧

and if ⟦λ⟧ = ⟦λ′⟧ then applying the same logical rule to λ, λ′ to get π, π′ then ⟦π⟧ = ⟦π′⟧.

Definition: Categorical Operational Semantics A categorical operational semantics is an operational semantics
such that there is a category C such that ∀A ⟦A⟧ ∈ C and ∀π ⟦π : Γ ⊢ ∆⟧ ∈ Hom(⟦⊗Γ⟧, ⟦⊕∆⟧) and ⟦cut(π|π′)⟧ =
⟦π⟧ ◦ ⟦π′⟧.

So we are saying that the denotations form a sort of subcategory; Objects are formulas, morphisms are
proofs and composition is cutting. Note that the associativity of composition is an axiom of the category and this
forces certain cut relations to be present.

Finally ⟦r⟧ is a endo-functor of the appropriate arity for each relation symbol r.

Theorem. If (C,⊗, I,⊸,⊥, !,×) is a nontrivial symmetric closed monoidal category with a dualising object, all prod-
ucts and a cotripple then there is a nontrivial categorical operational semantics

⟦⟧ : L → C

By nontrivial we mean that |C| > 1 and ∃A, B,C ∈ C A ⊗ B � C � A, B.
I dont know what im talking about but I want what these people are saying not to be meaningless and this is what im seeing

We are using the convention that the negation is a definied operation. So A⊥ is variable for A a variable or defined
through DeMorgan laws.

Try to prove this...

If I ever understand the classifying topos thing then check if these things can be unified etc
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2-Categories It seems natural to consider a 2-category as a model of a logic with the identifications

Formulas→ Ob jects

S equents→ Morphisms

Proo f s→ 2 − Moriphisms

Apparently no one has done this and looking at it further the way to make sequents morphisms seems to trivialise the
two category structure.

Possible Directions
• Invarience of implicit computational complexity properties under different cut elimination rules

• Link LAST and LALL into the stratified LL framework

• Abstract approach to stratification in LL [?] has four characterisations of L3 (elementary time), are there similar
characterisaitons of L4 (polynomial time)

• Understanding what DiLL tells us about computation.

– Dan claims if the derivative of a proof is zero wrt a variable then the proof "doesnt use" the input in some
sense

– It detects if a program computing a sum is really two seperate programs (by differentiating the summands
by the different variables)

– Cutting a proof against itself has a derivative of a certain kind apparently

– Can the rate at which cut elimination expands the size of the proof be detected by DiLL

π⇝cut π
′ d
dx

(π − π′) =?

– What about Taylor expansions, what do they tell us? Primitive proofs? Basis of proofs?

– There is a whole body of literature saying that DiLL is just a dress for the reesource lambda calculus.

• Give a good exposition of these 4 criteria of L4

• Join LL§ and DiLL.

– Abstract how the derivative should interact with the paragraph

– Dan’s suggestion is to compute derivatives of minimal examples in minimal semantics

– Could see what the general § functor characterisation does when mixed with D from the categorical seman-
tics of DiLL. Look at what kind of categories are models for both LL§ and DiLL.

– Can any of the theorems about DiLL or SLL be simplified by using the tools of the other?

• Actually do some math in LAST (Terui actually shows that all the peano axioms except induction are provable,
there is a modified notion of induction, so this would be the main difference, just tracking this change through
PA proofs)

• Formalise the cut elimination/strong normalisation of LL in Lean

• Make a study of the different cut elimination rules (generators) and the relation that they generate. Are they all
the same and if so how does this relations "uniquesness" determine the categorical structure of the semantics.
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o Did the substitution lemma get used elsewhere? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
o UNDER CONSTRUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
o There is a lot more on head reduction I think to look into . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
o write this out, I think this will make their notation more transparent? . . . . . . . . . . . . . . . . . . . . . 13
o why is this not just the directional derivative? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
o why is this a linear copy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
o "clear logical meaning, expressing how derivation behaves when interacting with a contraction in cut elimi-

nation"? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
o s(u) instead of (s)u now wtf, its not even in the syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
o That makes no sense? So this term is identically 0? They use equality in the thm between the application and

the Taylor series.. What do they mean? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
o but its not linear like MLL is so what are they talking about. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
o This is interesting to me because the type to me is the logical part and the term is the program. No but I think

the context is the actual proof, this is a term calculus for the proof, so the left of the : can be seen as the
lambda term or the actual proof itself and the right is the type or the thing that is proved. This explains the
use of the structural rules and dereliction rules in the context. . . . . . . . . . . . . . . . . . . . . . . . . 17

o Make this explicit and precise. Connect to Asperti and Teruis LALL and Mazzas L4 which are all polytime too 21
o Can we extend them to L4? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
o not clear on any of this, but it seems like the slickest way to formulate these things potentially . . . . . . . . 24
o This seems really weird, why should the denotations of formulas be entirely dependent on which logical rules

are applied, surely it matters to which of the formulas they are applied? Look at my handwritten notes for
a simple example that doesnt make sense to have the same denotation idk? He has some other enigmatic
comments on this too. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

o Justify this using one of the above principles, its uncomfortable becasue this is outsied the logic, its an
equivilence of provability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

o Could this be derived from the congruence concept of Girard? Its clearly kind of motivated however also
somehow not from a general principle just a vibe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

o I dont know what im talking about but I want what these people are saying not to be meaningless and this is
what im seeing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

o Try to prove this... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
o If I ever understand the classifying topos thing then check if these things can be unified etc . . . . . . . . . 26
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